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Bifurcations and stability of a molecular system are analyzed via a method which com-
bines a perturbation skim with Harmonic Balancing.

Nonlinear dynamics of atomic and molecular systems have been receiving con-
siderable attention. Miniaturization of electronic devices and the behaviour of fast
computers, for example, requires a careful study of dynamics at atomic and molecular
levels. It is observed that bifurcation and stability theories can play a very significant
role in understanding and predicting the behaviour of such systems. The underlying
dynamics, however, is quite complex and requires a non-linear analysis. A number of
mathematical models has been produced for this purpose.

A three-dimensional “semi-classical” model was originally developed [3,4] for
the investigation of infra-red (IR) multi-photon excitation of poly-atomic molecules.
This model involves a simplified quantum formulation which yields three autonomous
equations. A detailed analytical treatment of this model, including static and dynamic
bifurcations (Hopf bifurcation) and post bifurcation behaviour, has recently been pre-
sented [5]. In that paper, the Intrinsic Harmonic Balancing (IHB) technique [2] has
been applied to the autonomous set of equations to obtain quantitative analytical results
concerning the cusp catastrophe as well as Hopf bifurcations and the stability of both
the equilibrium states and the limit cycles exhibited by the model.

As an extension of these studies, a non-autonomous model is now introduced
which consists of the following equations:

ż1 =−z1 + φz2 − αz2z3 ≡ Z1(zi, η,φ; Ωt),
ż2 =−φz1 − z2 + αz1z3 − (η +E cos Ωt) ≡ Z2(zi, η,φ; Ωt), (1)

ż3 =−2(η +E cos Ωt)z2 − λz3 ≡ Z3(zi, η,φ; Ωt),

where the zi (i = 1, 2, 3) are the state variables, z1, z2 denote the average values of the
coordinate and momentum proportional to real and imaginary parts of 〈a〉, z3 denotes
〈a+a〉, the operators a+, a are the usual harmonic-oscillator type ladder operators,
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φ and η are two independent parameters which are known as detuning parameter
and Rabi rate, respectively, and α and λ are treated as constants. E and Ω are the
amplitude and frequency of the harmonic excitation, respectively. Setting E = 0 yields
the corresponding autonomous system studied earlier [5].

This model is expected to exhibit more complex phenomena, compared to the
autonomous system, and the effect of harmonic excitation on the behaviour of the
system is a point of interest. Indeed, it can be shown that quasi-periodic motions (on
a torus) bifurcate from a periodic motion, and as a result of the harmonic excitation,
the critical value of a parameter (Hopf bifurcation point) shifts to another value.

In order to analyse the behaviour of system (1), a non-singular transformation of
the form z = Aw (|A| 6= 0) is introduced such that the resulting system

ẇi = Wi(wj ,µ; Ωt) (2)

is referred to a (critical) Hopf bifurcation point of E = 0 system, where µ = η − ηc
and φ = φc, and the Jacobian of (2) at this point is in a canonical form with a pair of
imaginary eigenvalue and a real eigenvalue. Scaling the variables as

wi → εwi, µ→ εµ and E = εE

and assuming that internal and external frequencies satisfy the non-resonance condition
that they are not rationally linked, one can assume both the periodic and quasi-periodic
solutions to be in the parametric form

wi = wi(τ1, τ2; ε),
µ = µ(ε),

(3)

Figure 1. Bifurcation Diagram. Ω: the excitation frequency. a: is a function of (Ω); i.e., for a given Ω,
a is a constant. E: is the amplitude of the excitation. ρ: is a measure of amplitude characterizing the

solutions. µ: is a parameter representing the Rabi rate. ω: is a frequency associated with solutions.
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where τ1 = Ωt and τ2 = ω(ε)t, and ω(ε) is the frequency of the periodic solutions.
One can now apply the Intrinsic Harmonic Balancing technique [2] with the aid of a
two-time scale Fourier series

wi(τ1, τ2; ε) =
M∑
m=0

pim1m2 (ε) cos(m1τ1 +m2τ2) + rim1m2(ε) sin(m1τ1 +m2τ2), (4)

where m = m1 + m2, m, m1 and m2 are integers and m > 0 while m1 and m2

may be chosen as positive or negative, and M is an arbitrary positive integer. It is
noted that (4) reduces to ordinary Fourier series in the case m1 ≡ 0 or m2 ≡ 0.
The former case (m1 ≡ 0) describes periodic solutions of the associated autonomous
system considered in [5] while the latter case (m2 ≡ 0) denotes periodic solutions
which are purely excited by the external force E cos Ωt. ε is used as a small positive
perturbation parameter, and perturbation steps are carried out with the aid of MAPLE,
a symbolic computer language [1].

This perturbation technique yields the information for constructing the solutions
in the form of a Taylor series, asymptotically:

wi(τ1, τ2; ε) =woi (τ1, τ2) + w′i(τ1, τ2)ε+ 1
2w
′′
i (τ1, τ2)ε2 + · · · ,

µ(ε) =µo + µ′ε+ 1
2µ
′′ε2 + · · · ,

ω(ε) =ωc + ω′ε+ 1
2ω
′′ε2 + · · · .

The stability of solutions can also be examined. The results show that µ =
−aE2 (where a depends on Ω) represents a critical relation, at which quasi-periodic
motions bifurcate from the periodic motions as depicted in figure 1, and an exchange
of stabilities occur. Here ρ is a measure of amplitude, and full (dashed) lines indicate
stable (unstable) paths. It is observed that the critical value of µ shifts from µ = 0
(for the corresponding autonomous system) to µ = −aE2; this is the effect of the
harmonic excitation introduced to the model.

The details of this analysis as well as the effect of resonance will be presented
in two full-length papers in due course.
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